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Using variational wave functions and Monte Carlo techniques, we study the antiferromagnetic Heisenberg
model with first-neighbor J1 and second-neighbor J2 antiferromagnetic couplings on the honeycomb lattice. We
perform a systematic comparison of magnetically ordered and nonmagnetic states (spin liquids and valence-bond
solids) to obtain the ground-state phase diagram. Néel order is stabilized for small values of the frustrating
second-neighbor coupling. Increasing the ratio J2/J1, we find strong evidence for a continuous transition to a
nonmagnetic phase at J2/J1 ≈ 0.23. Close to the transition point, the Gutzwiller-projected uniform resonating
valence-bond state gives an excellent approximation to the exact ground-state energy. For 0.23 � J2/J1 � 0.36,
a gapless Z2 spin liquid with Dirac nodes competes with a plaquette valence-bond solid. In contrast, the gapped
spin liquid considered in previous works has significantly higher variational energy. Although the plaquette
valence-bond order is expected to be present as soon as the Néel order melts, this ordered state becomes clearly
favored only for J2/J1 � 0.3. Finally, for 0.36 � J2/J1 � 0.5, a valence-bond solid with columnar order takes
over as the ground state, being also lower in energy than the magnetic state with collinear order. We perform
a detailed finite-size scaling and standard data collapse analysis, and we discuss the possibility of a deconfined
quantum critical point separating the Néel antiferromagnet from the plaquette valence-bond solid.
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I. INTRODUCTION

Quantum spin models on two-dimensional frustrated lat-
tices represent important playgrounds where a variety of
phases can be attained, emerging from zero-point fluctua-
tions. Important examples include gapped and gapless spin
liquids and valence-bond states [1]. Quantum fluctuations
are strong when the value of the spin S on each site is
small (i.e., for S = 1

2 ) and in low spatial dimensionalities
(i.e., for small coordination numbers). Furthermore, they are
further enhanced in the presence of competing superexchange
couplings. In this situation, long-range magnetic order can melt
even at zero temperature. Then, nonmagnetic ground states
can either break some symmetries (e.g., lattice translations
and/or rotations), leading to a valence-bond solid (VBS), or
retain all the symmetries of the Hamiltonian. In the latter
case, the ground state is known as a quantum spin liquid
(or quantum paramagnet). The simplest example in which
the combined effect of strong quantum fluctuations and spin
frustration may give rise to a magnetically disordered ground
state is the J1-J2 Heisenberg model on the square lattice, where
both first- and second-neighbor couplings are present. Here,
recent numerical calculations predicted a genuine spin-liquid
behavior for J2/J1 ≈ 1

2 . However, it is still unclear whether the
spin gap is finite, implying a topological Z2 state, or not, thus
corresponding to a critical spin liquid [2–6]. A nonmagnetic
phase is expected to appear also in the J1-J2 model on the
triangular lattice, in the vicinity of the classical transition point
J2/J1 ≈ 1/8. Also in this case, the nature of the ground state
is not fully understood, with some calculations supporting
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gapped excitations (and signatures of a spontaneously broken
lattice point group) and other ones sustaining a gapless spin
liquid [7–11]. Finally, a widely studied example in which
the ground state does not show magnetic ordering is the
Heisenberg model on the kagome lattice. Again, the true
nature of the ground state is not fully understood as large-scale
numerical simulations give conflicting results on the presence
of a spin gap [12–16].

All these examples are characterized by an odd number of
sites per unit cell, and therefore, according to the Lieb-Schultz-
Mattis theorem and its generalizations [17–21], a gapped
spectrum implies a degenerate ground state, either because
of some symmetry breaking (leading to a VBS) or due to
topological degeneracy (characteristic of Z2 spin liquids). The
honeycomb lattice, with its two sites per unit cell, represents
a variation in this respect, and it may therefore show different
physical properties than the previously mentioned cases. The
frustrated J1-J2 Heisenberg model on this lattice has been
investigated by a variety of analytical and numerical methods,
including semiclassical [22–24], slave-particle [25,26], and
variational approaches [27–29], coupled-cluster [30] and
functional renormalization-group methods [31], series expan-
sion [32], and exact diagonalization [23,33,34]. Recently,
density-matrix renormalization-group (DMRG) calculations
[35,36] suggested that a plaquette VBS is obtained as soon
as the antiferromagnetic order melts through the frustrating
superexchange coupling, i.e., for J2 � 0.25J1. Furthermore,
Ganesh et al. [37,38] claimed the existence of a deconfined
quantum critical point, separating the Néel from the plaquette
VBS phase. These DMRG results contradict earlier variational
calculations that found an intermediate phase of gapped
quantum spin liquid between the Néel order and the plaquette
VBS [27]. This spin liquid was identified as the so-called
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FIG. 1. Phase diagram of the spin- 1
2 J1-J2 Heisenberg model on

the honeycomb lattice for 0 � J2/J1 � 0.5 with schematic illustra-
tions of the Néel magnetic order, plaquette, and columnar dimer
orders. The solid dots indicate quantum phase transitions between
Néel and plaquette VBS (J2/J1 ≈ 0.23) and between plaquette and
columnar VBS (J2/J1 ≈ 0.36). The region where the d ± id spin
liquid has a competitive energy is marked by the green oval.

sublattice pairing state (SPS) [26,36,39]. The SPS was
originally motivated by the idea that the half-filled Hubbard
model on the honeycomb lattice could sustain a gapped
spin-liquid phase at intermediate values of electron-electron
repulsion [40]. However, this idea eventually turned out to be
incorrect [41].

In this paper, we revisit the ground-state phase diagram
of the spin- 1

2 J1-J2 Heisenberg model on the honeycomb
lattice using variational wave functions that can describe both
magnetically ordered and disordered phases. As far as the latter
are concerned, we perform a systematic study of all possible
spin-liquid Ansätze that have been classified in Ref. [26],
including chiral states as well. Moreover, we construct VBS
wave functions that are compatible with the previous DMRG
simulations (including both plaquette and columnar orders).
Our results show that the Néel order melts for J2/J1 ≈ 0.23, in
very good agreement with DMRG [35,36,38]. Furthermore, we
find that the best spin-liquid wave function for J2/J1 � 0.23
is not the gapped SPS as claimed earlier [27,36] but instead
a symmetric Z2 state with Dirac cones (which is dubbed
d ± id), distinct from all previously discussed spin-liquid
phases. Nonetheless, for J2/J1 � 0.3 we find a substantial
energy gain when translation symmetry is broken in the
variational Ansatz, suggesting the presence of a plaquette
VBS as soon as the Néel order melts through spin frustration.
Our finite-size scaling analysis supports the conclusion of a
continuous Néel to VBS transition and may be consistent with
the presence of a quantum critical point. For even stronger
frustration (i.e., J2/J1 � 0.36), a VBS with columnar dimers
becomes energetically favored. A sketch of the quantum phase
diagram is shown in Fig. 1.

This paper is organized as follows: In Sec. II we give details
of the model and the variational wave functions that have been
employed. In Sec. III, we show the numerical results, and,
finally, in Sec. IV, we draw our conclusions.

FIG. 2. The honeycomb lattice is shown on the left: a1 and a2 are
the primitive vectors of the Bravais lattice. A and B denote the two
sublattices: A-type sites are placed at the origin of the unit cell, while
B-type sites are displaced by (0,1). The dashed lines represent the
directions of the vectors T1 and T2 that define the finite lattice clusters
used in the calculations. A schematic illustration of the interactions
in the J1-J2 Heisenberg model is shown on the right.

II. MODEL AND METHODS

The spin- 1
2 J1-J2 Heisenberg model is defined by

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj , (1)

where 〈i,j 〉 and 〈〈i,j 〉〉 denote first- and second-neighbor
bonds, respectively (see Fig. 2). The honeycomb lattice has
two sites per unit cell, and the underlying Bravais lattice has
a triangular structure with primitive vectors a1 = (

√
3,0) and

a2 = (
√

3/2,3/2). The two sites in the unit cell are labeled by
A and B: the former one is placed in the origin of the cell,
while the latter one is displaced by the unit vector δ = (0,1)
(see Fig. 2). Then, the coordinates of the site i are given
by Ri = R0

i + ηiδ, where R0
i = nia1 + mia2, with ni and mi

being integers and the two sites in the unit cell having the
same R0

i and ηi = 0 or 1. Note that our choice of primitive
vectors is such that the first-neighbor distance is equal to 1.
For our numerical calculations, we take lattice clusters that
are defined by T1 = 2La2 − La1 and T2 = La2 + La1, thus
consisting of Ns = 6L2 sites (i.e., 3L2 unit cells with two sites
each). Periodic boundary conditions are imposed on the spin
model of Eq. (1).

Our results are obtained using variational wave functions
constructed from so-called Gutzwiller-projected fermionic
states defined as

|�〉 = PStot
z
JzPG|�0〉. (2)

Here, |�0〉 is the ground state of suitable quadratic Hamil-
tonians for auxiliary spinful fermions {ci,↑,ci,↓} described
below. PG = ∏

i(ni,↑ − ni,↓)2 is the Gutzwiller projector that
enforces exactly one fermion per site (ni,σ = c

†
i,σ ci,σ ), which

is needed in order to obtain a faithful wave function for the
Heisenberg model. PStot

z
is the projector on the subspace in

which the z component of the total spin is zero. Finally, Jz is
the spin-spin Jastrow factor:

Jz = exp

⎛
⎝−1

2

∑
i,j

vij S
z
i S

z
j

⎞
⎠, (3)
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where the pseudopotential vij depends on the distance
|Ri − Rj | (for a translationally invariant system).

Let us now describe in detail the form of the quadratic
Hamiltonians that are used to define |�0〉. We will mainly
consider two options: one for magnetically ordered phases
and the other for nonmagnetic phases. In the first case, we take

Hmag =
∑
i,j,σ

tij c
†
i,σ cj,σ + H.c. +

∑
i

hi(c
†
i,↑ci,↓ + c

†
i,↓ci,↑),

(4)
where tij denotes the hopping amplitude and hi is a (fictitious)
magnetic field along the x direction, which is taken to have a
periodic pattern:

hj = h exp[i(Q · R0
j + φj )], (5)

where Q is the wave vector that fixes the periodicity and
φj is a sublattice-dependent phase shift. In this work, we
consider the antiferromagnetic Néel phase with Q = (0,0)
and φj = ηjπ (i.e., φj = 0 for j ∈ A and φj = π for j ∈ B)
and a collinear phase with Q = (0,2π/3) and φi = 0. Within
this kind of magnetically ordered states, it is very important
to take into account the spin-spin Jastrow factor in order to
introduce transverse spin fluctuations (i.e., spin waves) [42].
We mention in passing that the case tij = 0 reduces to a
“bosonic” (pure Jastrow) state, which has been used by Di
Ciolo et al. for this model [29]. Interestingly, we find that
a nonzero uniform first-neighbor hopping does provide an
energy gain with respect to this “bosonic” case. This situation
is similar to the triangular-lattice antiferromagnet, where a
hopping term with Dirac spectrum was also found to result in
a substantial energy gain [11].

In contrast, nonmagnetic phases, such as spin liquids and
VBSs, can be described by taking

Hsl =
∑
i,j,σ

tij c
†
i,σ cj,σ +

∑
ij

�ij ci,↓cj,↑ + H.c.

+
∑
i,σ

μic
†
i,σ ci,σ +

∑
i

ζici,↓ci,↑ + H.c., (6)

where, in addition to the hopping, we introduce singlet pairing
terms, ζi and �ij = �ji , as well as a chemical potential μi .
Within this framework, a classification of distinct spin-liquid
phases can be obtained through the so-called projective-
symmetry-group (PSG) analysis [43,44]. From a variational
perspective, the PSG provides a recipe for constructing
symmetric spin-liquid wave functions through specific Ansätze
for the Hamiltonian (6). The simplest Ansatz is given by a
first-neighbor hopping (tij = t) and no pairing terms (�ij =
ζi = 0). This is the uniform resonating valence-bond (uRVB)
state, which is a U(1) state with Dirac cones at the corners of the
hexagonal Brillouin zone. By performing a PSG classification,
Lu and Ran [26] found 24 symmetric Z2 spin liquids that are
continuously connected to this uRVB (i.e., that can be obtained
from the uRVB by adding further hopping and/or pairing
terms). Among those states, the presence of the gapped SPS
was emphasized. The SPS Ansatz is characterized by a uniform
first-neighbor hopping t and a complex second-neighbor
pairing with opposite phases on A-A and B-B links, i.e.,
�AA

ij = �eiθ and �BB
ij = �e−iθ . Such a state is always gapped

if � 	= 0 and θ 	= π/2. In principle, the PSG classification

FIG. 3. Schematic illustration of the d ± id spin-liquid state.
Here, φij and θij are the complex phases of first-neighbor hopping
and second-neighbor pairing, respectively. The direction of the arrows
(i → j ) indicates the convention of phases for the hopping terms.

also allows an on-site pairing with opposite phases on the two
sublattices, i.e., ζA

i = ζeiφ , ζB
i = ζe−iφ . In agreement with

previous studies [27,36], we find that the SPS Ansatz has a
lower variational energy than the uRVB state for J2/J1 � 0.25.
The actual value of θ can be set to zero since the variational
energy does not change appreciably for θ � π/4. However,
here, we find another gapless spin liquid (i.e., number 18 in
Table I of Ref. [26]) that has an even lower energy than the SPS
wave function and represents the best Z2 state among those
classified within the fermionic PSG. We adopt a natural gauge
in which this spin-liquid Ansatz has first-neighbor hopping
tij = teiφij and second-neighbor pairing �ij = �eiθij with
complex phases as given in Fig. 3, a convention that differs
from the original PSG solution of Ref. [26]. Since �ij has a
dx2−y2 + idxy phase winding on the triangular lattice of A sites
and dx2−y2 − idxy on the B sublattice, we call this new state
d ± id. For � = 0, the d ± id state reduces to uRVB, while
for t = 0, it is two copies of the quadratic band touching state
that has been discussed in Ref. [7] for the triangular lattice. For
finite �, the fermionic mean-field energy bands show Dirac
nodes at the center and at the corners of the Brillouin zone (see
Fig. 4). Note that, despite the presence of complex hopping and
pairing terms, both the SPS and the d ± id states do not break
time-reversal symmetry (or any other lattice symmetry) once
the wave function is Gutzwiller projected to the physical spin
Hilbert space (see the Appendix for its projective symmetries).
Beyond fully symmetric phases, we also looked for potential
chiral spin liquids as outlined in Ref. [44]. However, we do
not find any indication for such ground states in the present
model.

Using the Hamiltonian of Eq. (6), we can also construct
wave functions with VBS order. This can be achieved by
allowing a translation and/or rotation symmetry breaking in
the hopping tij and/or in the pairing �ij parameters. Here,
we consider two possibilities which are motivated by recent
DMRG results [35,36,38]. These are obtained by considering
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FIG. 4. Mean-field spectrum of the gapless d ± id pairing state.
The energy bands are shown along the path � → K → M → � in
the Brillouin zone (inset). The value of the second-neighbor pairing
is � = 0.35t , which is very close to the optimal value obtained for
J2/J1 = 0.35. The bands show Dirac cones located at � and K points.
Note that the two bands are twice degenerate along M → �.

two different first-neighbor hoppings t and t ′, forming “strong”
and “weak” plaquettes or columnar dimers (see Fig. 5). In
both cases, a remarkable improvement in variational energy
is achieved by adding a (uniform) second-neighbor pairing
with d ± id symmetry, as well as including the corresponding
complex phases for the dimerized first-neighbor hoppings
(Fig. 3). These are rare examples of clear VBS instabilities in
frustrated two-dimensional Heisenberg models using Peierls-
type mean-field parameters in Gutzwiller-projected wave
functions (see, e.g., Ref. [45]).

Finally, we would like to emphasize that, in order to
calculate observables (e.g., the variational energy or any
correlation function) in the state of Eq. (2), Monte Carlo
sampling is needed since an analytic treatment is not possible
in two spatial dimensions. The optimal variational parameters
(including the ones defining the quadratic Hamiltonian and
the Jastrow pseudopotential) for each value of the ratio
J2/J1 can be obtained using the stochastic reconfiguration
technique [46].

FIG. 5. Patterns of the first-neighbor hoppings in the quadratic
Hamiltonian (6) as found (a) in the plaquette VBS and (b) in the
columnar VBS.

III. RESULTS

In the following, we show the numerical results obtained
with the variational approach described in the previous section.

A. Accuracy of the wave functions

Let us first discuss the accuracy of the optimized variational
energy for various states on a small lattice cluster with 24
sites (i.e., L = 2) for which exact diagonalization is available.
In Fig. 6, we present the results for the uRVB state (with
only first-neighbor hopping), the Néel state (also including the
fictitious magnetic field hi and the spin-spin Jastrow factor),
the SPS Ansatz (with second-neighbor pairing and θ = 0), and
the d ± id state. First of all, starting from the unfrustrated limit
with J2 = 0, the accuracy of the uRVB state clearly improves
until J2/J1 ≈ 0.2. Then the energy rapidly deteriorates when
J2/J1 is further increased. For J2/J1 � 0.2, the best variational
state is given by including Néel order with Q = (0,0) and
φi = ηiπ . In this regime, the strength of the magnetic field h

in Eq. (5) decreases as J2/J1 increases, and it goes to zero for
J2/J1 � 0.2. When h = 0, only a marginal energy gain with
respect to the uRVB state is obtained due to a (small) spin-spin
Jastrow factor. For this reason, the results for the Néel state
are not reported for J2/J1 > 0.2. In contrast, an energy gain is
found in this regime by allowing a pairing term in Eq. (6). Here,
both the SPS and the d ± id Ansätze give a lower variational
energy than the simple uRVB. We emphasize that the d ± id

wave function represents the best fermionic state among the
24 Z2 spin liquids listed in Ref. [26]. On the small cluster
considered, there is no significant energy gain by allowing
VBS order on top of the d ± id state for J2/J1 � 0.35.

B. The Néel phase

In order to draw the ground-state phase diagram, we focus
on the Néel phase and perform a finite-size scaling of the

FIG. 6. Accuracy of the variational energy for different wave
functions on the 24-site cluster. Here, �E is the difference between
the variational (Evar) and the exact (Eex) ground-state energy.
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FIG. 7. Finite-size scaling of the square magnetization m2,
Eq. (7), for different values of J2/J1. For J2 = 0 the optimal value of
the fictitious magnetic field is h/t ≈ 0.32.

magnetization, which is obtained from the expectation value
of the spin-spin correlation at the maximal distance

m2 = lim
|i−j |→∞

〈Si · Sj 〉 (7)

in the variational state |�〉. The results for 0 � J2/J1 � 0.22
are reported in Fig. 7 for L ranging from 6 to 10 (i.e., up to 600
sites). The thermodynamic extrapolation of the magnetization
m is shown in Fig. 8. The expected 1/L corrections are

FIG. 8. Thermodynamic limit of the magnetization m as a
function of J2/J1. The result from quantum Monte Carlo of Ref. [47]
for J2 = 0 is shown for comparison (red cross). The classical value
is m = 0.5.

correctly reproduced by the spin-spin Jastrow factor, which
is able to introduce the relevant low-energy fluctuations on
top of the classical order parameter that is generated by the
magnetic field h of Eq. (5). The thermodynamic value of the
staggered magnetization vanishes for J2/J1 ≈ 0.23 (see also
the discussion in Sec. IV), in good agreement with previous
DMRG calculations [35,36,38]. We remark that the value
J2/J1 ≈ 0.23 is larger than the one obtained in the classical
limit (i.e., J2/J1 = 1/6), indicating that quantum fluctuations
favor collinear magnetic order over generic coplanar spirals
(which represent the classical ground state for J2/J1 > 1/6).
Comparison with exact quantum Monte Carlo calculations,
which are possible only in the unfrustrated case J2 = 0 [47],
further substantiates the accuracy of the Néel wave function
on large systems (see Fig. 8). Even though a direct inspection
of our numerical results cannot exclude a first-order transition
at J2/J1 ≈ 0.23, a detailed finite-size scaling analysis based
on data collapse suggests that the transition between the Néel
and nonmagnetic phase is continuous (see below).

C. The nonmagnetic phase

Increasing the ratio J2/J1, the Néel order melts, and the
natural expectation is that a nonmagnetic phase is stabilized
by quantum fluctuations. Nonetheless, we cannot exclude
that magnetic states with incommensurate spirals are favored
instead, which occurs in the classical limit for J2/J1 > 1/6.
In any numerical calculation that considers finite clusters,
it is very difficult to assess states with large periodicity or
with pitch vectors that are not allowed by the finite-cluster
geometry. Therefore, we will not consider the possibility of
incommensurate spiral orders here, and we restrict ourselves to
states with collinear order, i.e., the one with Q = (0,2π/3) and
φi = 0. This restriction is justified by recent variational Monte
Carlo results showing that collinear states (or short-period
spirals) may prevail over generic states with long periodicity
[29]. As far as the nonmagnetic states are concerned, we
consider the ones that can be constructed with the help of
the Hamiltonian (6). For these cases, we do not include the
spin-spin Jastrow factor (3) since this term would break SU(2)
spin-rotation symmetry (in any case, the inclusion of a Jastrow
factor leads to only minor energy gains).

In Fig. 9, we report the finite-size scaling of the energies for
J2/J1 = 0.3, 0.35, and 0.4. Various variational wave functions
are reported since the uRVB is unstable when adding pairing
terms or allowing a translation symmetry breaking in the
quadratic Hamiltonian. First of all, the SPS Ansatz gives a
size-consistent improvement with respect to the uRVB state in
both cases. Our calculations are shown for θ = 0. In addition to
the second-neighbor pairing, the symmetry-allowed nonzero
on-site pairing leads to a gapless mean-field spectrum, spoiling
the gapped nature of the SPS Ansatz. However, this variational
freedom does not give an appreciable energy gain for the
values of J2/J1 considered here. The best spin-liquid wave
function, among the 24 possibilities listed in Ref. [26], is
the d ± id state discussed in Sec. II. But most strikingly,
the lowest-energy state in this regime has plaquette VBS
order, where the first-neighbor hoppings exhibit the pattern
shown in Fig. 5(a). Here, the presence of a second-neighbor
pairing with d ± id symmetry gives a significant improvement
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FIG. 9. Finite-size scaling analysis of the variational energy of
different wave functions for J2/J1 = 0.3, 0.35, and 0.4. Statistical
errors are smaller than the symbol size. The uRVB, SPS, and d ± id

states are reported only for J2/J1 = 0.3 and 0.35; for J2/J1 = 0.4,
their energies are much higher than those of plaquette and columnar
dimer VBS states. The dashed lines are the fitting functions used for
the extrapolation to the thermodynamic limit. For the d ± id state,
the optimal values of the parameters are �/t ≈ 0.31 and �/t ≈
0.36 for J2/J1 = 0.3 and 0.35, respectively. For the plaquette state
the parameters range from �/t ≈ 0.31 and t ′/t ≈ 0.90 for J2/J1 =
0.3 to �/t ≈ 0.38 and t ′/t ≈ 0.62 for J2/J1 = 0.4. Finally, for the
columnar state we get �/t ≈ 0.34 (�/t ≈ 0.37) and t ′/t ≈ 0.45
(t ′/t ≈ 0.20) for J2/J1 = 0.35 (J2/J1 = 0.4).

in the variational energy, but the stabilization of a plaquette
state is already observed using only first-neighbor hopping.
Its energy gain with respect to the uniform d ± id Ansatz
clearly increases with increasing J2/J1, being approximately

FIG. 10. Finite-size scaling analysis of the variational energy
of VBS and collinear magnetic states at J2/J1 = 0.5. The optimal
values for the plaquette state are �/t ≈ 0.40 and t ′/t ≈ 0.20. For
the columnar state t ′/t is essentially zero, while �/t ≈ 0.37. The
fictitious magnetic field of the collinear state has optimal value
h/t ≈ 0.98.

5 × 10−4J1 for J2/J1 = 0.3 and 2 × 10−3J1 for J2/J1 = 0.35
(see Fig. 9).

Further increasing J2/J1, a different VBS with columnar or-
der wins over the plaquette VBS (see Fig. 9). The correspond-
ing pattern of first-neighbor hoppings is shown in Fig. 5(b).
Again, a second-neighbor d ± id pairing gives a substantial
energy gain, allowing us to obtain a stable optimization of
the columnar order. The fact that both columnar and plaquette
states can be stabilized, even when their respective energy is
higher than that of the competitor, strongly suggests that the
transition between these two VBS phases is first order. Based
on the calculation of variational energies on relatively large
clusters, our estimation of the transition point is J2/J1 ≈ 0.36
(in remarkably good agreement with DMRG [35,38]).

Finally, we briefly discuss the possible emergence of
magnetic order close to J2/J1 = 0.5. Unfortunately, the pitch
vector of the relevant magnetic state that is found at the
classical and semiclassical levels varies continuously with
J2/J1 [23,24]. This fact makes it impossible to determine the
best spiral state on finite clusters. However, for J2/J1 = 0.5,
the classical state that is selected by quantum fluctuations is
relatively simple, having collinear order. More specifically, it
has spins that are antiferromagnetically aligned on two out
of the three first-neighbor directions and ferromagnetically
aligned on the third direction. There are three inequivalent
possibilities for this ordering (corresponding to the choice
of the ferromagnetic bond), and therefore, this state breaks
rotation symmetry (similar to the J1-J2 model on the square
lattice for J2/J1 > 0.5 [48]). In the following, we compare
the VBS and the collinear magnetic state for J2/J1 = 0.45
and 0.5. We take the best VBS Ansatz, which is given by
the columnar state (including the d ± id pairing), and a
magnetically ordered wave function, which is constructed
using Eq. (4) with Q = (0,2π/3) and φi = 0. The results of
the finite-size scaling of the energies are shown in Fig. 10 for

104401-6



COMPETITION BETWEEN SPIN LIQUIDS AND VALENCE- . . . PHYSICAL REVIEW B 96, 104401 (2017)

J2/J1 = 0.5 (similar results are obtained for J2/J1 = 0.45).
In this regime, the VBS Ansatz overcomes the collinear state
with a remarkable energy gain. Therefore, we can safely
affirm that, for 0.36 � J2/J1 � 0.5, the best variational wave
function exhibits VBS order. These results are in agreement
with previous studies [27,38], which detected signatures of
rotation symmetry breaking and suggested the existence of a
dimerized phase for large values of J2/J1.

D. Néel to VBS transition: Finite-size scaling analysis

In this section, we briefly discuss the possibility for the
Néel to VBS transition to be an example of the so-called
deconfined quantum criticality [49,50] as suggested by Ganesh
et al. [37,38]. We compute both the magnetization [see Eq. (7)]
and the VBS order parameter:

ψ = 1

N

∑
i∈A

〈Di〉e−i 2π
3 (ni−mi ), (8)

where

Di = Sz
i S

z
i+x + Sz

i S
z
i+ye

i 2π
3 + Sz

i S
z
i+ze

−i 2π
3 . (9)

Here, site i has coordinates Ri = nia1 + mia2 (belonging to
sublattice A), while sites i + x, i + y, and i + z have coordi-
nates Ri − a2 + δ, Ri + a1 − a2 + δ, and Ri + δ, respectively
[51]. Note that, since the variational wave function explicitly
breaks translation symmetry, the order parameter (and not its
square) can be directly assessed in the numerical calculation.
For continuous transitions, we have

m2L1+ηm = Fm

[(
J2 − Jcm

Jcm

)
L1/νm

]
, (10)

|ψ |2L1+ηp = Fp

[(
J2 − Jcp

Jcp

)
L1/νp

]
, (11)

where νm (νp) is the exponent for the magnetic (plaquette)
correlation length, ηm (ηp) is the exponent for this correlation
function at criticality, and Jcm and Jcp are the values of J2 at
the transition points. Finally, Fm and Fp are suitable scaling
functions. In the case of deconfined criticality, we must have
Jcm = Jcp and νm = νp, while the exponents are different,
i.e., ηm 	= ηp. The results for the magnetization m2 and for
the plaquette order |ψ |2 are reported in Fig. 11. Performing
two separate fitting procedures based on a Bayesian statistical
analysis [52], we get Jcm = 0.234(1), νm = 0.664(1), ηm =
0.837(1) for the magnetization and Jcp = 0.224(1), νp =
1.077(1), ηp = 0.799(1) for the plaquette order. These fitting
procedures give a remarkably good collapse of the two curves.
Note that the evaluations of the critical points are in very
good agreement, and also the values of ηs and ηp may be
compatible with the prediction of the theory [53]. However,
the values of the exponents νm and νp are quite different,
with an anomalously large value obtained for |ψ |2. In fact,
when attempting to fit both curves with the same ν, a much
worse result is obtained (not shown), and the data collapsing
procedure fails in a large part of the magnetization curve.

When analyzing these scaling results, one must keep in
mind that they are obtained within a variational approach,
which may miss subtle details of the final phase diagram.
Therefore, it can be very difficult to detect the existence of

FIG. 11. Finite-size scaling collapse of the data of the antiferro-
magnetic (top) and plaquette (bottom) order parameters.

a deconfined quantum criticality. Nevertheless, it is striking
that the two transitions look continuous with critical values Jc

that are extremely close to each other. The failure to obtain
a good collapse with a single exponent ν could be due to the
approximate nature of the variational wave function, which
may not be particularly accurate in the VBS region (see Fig. 6).

IV. CONCLUSIONS

In conclusion, we have employed variational wave func-
tions and quantum Monte Carlo methods to study the frustrated
J1-J2 Heisenberg model on the honeycomb lattice. We find
that quantum fluctuations enlarge the region of stability of the
collinear Néel phase with respect to the classical model, up to
J2/J1 ≈ 0.23. Further increasing J2/J1, a plaquette VBS order
is stabilized, even though a gapless Z2 spin liquid (dubbed
d ± id) represents a state with highly competitive variational
energy, especially in the proximity of the phase transition. We
expect that this interesting new spin liquid can possibly be
favored by farther-range couplings or by ring-exchange terms.
At J2/J1 ≈ 0.36, another VBS state with columnar order
becomes energetically favored. Our results are in excellent
agreement with recent DMRG calculations [35,36,38].

Regarding the nature of the Néel to VBS transition, we
hope that the promising results obtained by our approach
will give new impetus to examine the topic of a deconfined
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quantum critical point in the frustrated Heisenberg model on
the honeycomb lattice.
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APPENDIX: PSG OF THE d ± i d SPIN LIQUID

In this appendix, we briefly discuss the projective symmetry
group [43,44] and some physical properties of the competitive
d ± id state discussed in this paper. For this purpose, we
introduce a different formulation of the Hamiltonian of Eq. (6),
dropping the on-site terms which are not relevant for the
present discussion:

Hsl =
∑
i,j

ψ
†
i uijψj =

∑
i,j

(c†i,↑,ci,↓)

(
tij �∗

ij

�ij −t∗ij

)(
cj,↑
c
†
j,↓

)
.

(A1)

A spin-liquid Ansatz uij is invariant under the combined effect
of a lattice symmetry transformation O and the corresponding
gauge transformation gO, namely,

uij = gO(i)uO−1(i)O−1(j )g
†
O(j ). (A2)

The d ± id spin-liquid state is classified as number 18 in
Table I of Ref. [26]. In the gauge employed in that paper,
the quadratic mean-field Hamiltonian has a large cell (i.e., six
sites). Here, we use a more natural gauge where the unit cell
of the honeycomb lattice is not enlarged. In our gauge, both
first-neighbor hopping phases and second-neighbor pairing
phases undergo a l = 2 phase winding, as shown in Fig. 3.
As a trade-off for the simplicity of the Ansatz, the projective
representation of symmetries is slightly more involved in this
gauge.

More explicitly, in our gauge we have trivial representations
of lattice translations along a1 and a2, namely, g1 = g2 = 12.
The projective representation of the point-group symmetries,
i.e., the mirror reflection σ and the sixfold rotation R (see
Fig. 12), is the following:

gσ (s) = 12, (A3)

gR(s) = (−)s iσ1e
(1−2s) π

3 iσ3 , (A4)

where s = 0,1 is the sublattice index. Finally, for the time
reversal T , we have

gT (s) = (−)s iσ3. (A5)

For example, Eq. (A5) implies that complex hopping terms
between sites of different sublattices and complex pairing
terms between sites of the same sublattice are time reversal
invariant [44]. The gauge transformation that relates our gauge
for the d ± id state to the one used in Ref. [26] (number 18 in

FIG. 12. Symmetry generators of the point group of the honey-
comb lattice (σ and R). As an example, we show the loops for which
we computed the SU(2) flux: (a) parallelogram-shaped (sublattice
A), (b) parallelogram-shaped (sublattice B), (c) diamond, and (d)
rectangular plaquettes.

Table I) is given by

g(j ) = (−iσ3)s exp

[
i
π

12
σ3

]
exp

[
−i

2π

3
(nj − mj )σ3

]
.

(A6)

In our gauge the Ansatz matrix reads

uij =
{
tσ3 exp[iφijσ3], (i,j ) first neighbor,
�σ1 exp[iθij σ3], (i,j ) second neighbor, (A7)

where the phases φij and θij are the ones in Fig. 3.
To conclude, let us discuss the gauge-invariant fluxes of the

d ± id state on the honeycomb lattice. For any lattice loop C
with base site j , we can define the SU(2) flux

Pj =
∏
C

ukl = ujj2uj2j3 · · · ujpj , (A8)

where p is the number of sites in the loop. The trace of the
2 × 2 matrix Pj is independent of the base site j [44],

Tr Pj =
{

2ρ cos(θ ), p even,
2iρ sin(θ ), p odd,

(A9)

and the angle θ is the gauge-invariant quantity that character-
izes the SU(2) gauge flux.

For the d ± id Ansatz, pure first-neighbor loops have
trivial fluxes (θ = 0) since the first-neighbor hopping is
gauge equivalent to the uRVB state. The second-neighbor
pairings, however, have nontrivial SU(2) flux with θ = ±2π/3
through the parallelogram-shaped plaquettes of the triangular
sublattices A [Fig. 12, loop (a)] and B [Fig. 12, loop (b)].
Odd-site loops do not contain nontrivial flux since the state
is time reversal invariant. As far as loops made from two
first-neighbor and two second-neighbor links are concerned,
we can have either a diamond J1J1J2J2 [Fig. 12, loop (c)]
or a rectangular J1J2J1J2 [Fig. 12, loop (d)] plaquette. In the
d ± id state, the trace of flux through the diamond plaquettes is
trivial, while it gives θ = π through the rectangular plaquettes.
These gauge-invariant fluxes are related to expectation values
of certain multiple-spin operators [44].
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